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Abstract    Probabilistic programming (PP) allows us to infer beliefs for unobservable events, represented as stochastic variables of 
probabilistic models. PPs have rely on Markov chain Monte Carlo (MCMC), however, MCMC is not efficient in the problems involving many (over 
thousands) variables. Recently, an automation procedure for variational inference, automatic differentiation variational inference (ADVI), has been 
proposed as an alternative to MCMC. ADVI has been implemented in PyMC3, a python library for PP. In this presentation, I will show the theory of 
ADVI and an application of PyMC3's ADVI on probabilistic models. 

PP and PyMC3

Example: Gaussian mixture model (GMM)

Automatic differentiation variational inference (ADVI)

Example: latent dirichlet allocation (LDA) with variational autoencoder

Summary With automatic Bayesian inference, probabilistic programming allows us to estimate posterior distribution on high 
dimensional parameter space, which is impossible to automate with MCMC. Almost arbitrary probabilistic models can be applied. In addition, 
variational autoencoder can be  incorporated when variational posterior is defined for latent variables corresponding to each sample in data. By 
using PyMC3, the model (and NN for autoencoding) is written as a Python code with a natural syntax. Users do not need to learn modelling 
languages specific to the library.  

• PPs allows us to write probabilistic generative models and 
infer unknown stochastic variables in the model. 

• In PyMC3, probabilistic models is written as Python code. 

Generative model Inference of posterior

p(x|z)p(z)
x : data

z : unknown variables
p(z|x) = p(x|z)p(z)

p(x)
Posterior distribution of  

unknown variables

Topic #0: don think just know make going like people want sure
Topic #1: year team game play win games players season period new
Topic #2: edu information com mail list send available university 1993 email
Topic #3: people state government gun world said years war states armenian
Topic #4: god people believe does true jesus say question life way
Topic #5: windows use thanks drive using window card file does work
Topic #6: key use chip encryption government public keys used law clipper
Topic #7: did time didn got said just day right thought let
Topic #8: good like ve better really car probably lot know problem
Topic #9: new power space 10 00 years used price 50 high

Generative model of LDA

ADVI Iteration

EL
BO

• Evicence lower bound (ELBO)
L[q✓(z)] ⌘ Eq✓(z)[log p(x, z)� log q✓(z)]

Goal: minimize distance between 
variational posterior          and 
true posterior            wrt parameter p(z|x)

q✓(z)
✓

• Distance: KL-divergence 
KL(q✓(z)||p(z|x))

= log p(x)�KL(q✓(z)||p(z|x))

Since               is constant wrt   , larger 
             , lower the distance 

log p(x) ✓
L[q✓(z)] KL(q✓(z)||p(z|x))

PyMC3 code
def logp_gmix(mus, pi, tau):
    def logp_(value):        
        logps = [tt.log(pi[i]) + logp_normal(mu, tau, value)
                 for i, mu in enumerate(mus)]
            
        return tt.sum(LogSumExp(tt.stacklists(logps)[:, :n_samples], axis=0))

    return logp_

with pm.Model() as model:
    mus = [MvNormal('mu_%d' % i, mu=np.zeros(2), tau=0.1 * np.eye(2), shape=(2,))
           for i in range(2)]
    pi = Dirichlet('pi', a=0.1 * np.ones(2), shape=(2,))
    xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data)

Generative model of GMM

p(mk) = N(0, Id)
p(z)Prior

p(x|z)Likelihood

Variational inference Variable transformation
1. From original constrained space (e.g., 

positive values or simplex) to 
(unconstrained) real coordinate space 

2. From standardized space to real 
    coordinate space

p(z)

z ẑ

p(ẑ)

z = T�1(ẑ)

ẑ = T (z)

p(z̃)

z̃ẑ

p(ẑ)

ẑ = S�1
✓ (z̃)

z̃ = S✓(ẑ)

Parametrized distribution in the expectation of 
ELBO can be replaced with a fixed distribution,  
allowing to compute an accurate (low variance) 
stochastic gradient

Stochastic gradient

r✓L[q✓(z)] = r✓Eq(z̃)[f✓(z̃)]
= Eq(z̃)[r✓f✓(z̃)]

⇠ M�1
PM

m=1 r✓f✓(z̃(m))

Monte Carlo sampling

p(�k) = Dir(�k|�)
Word distribution of k-th topic

Topic distribution of i-th doc

Probability of words in i-th doc

Variational autoencoder

: Depend on each sample
�k : Depend on the model

Unknown variables: 
PyMC3 code

NN LDA

xi

def encode(self, xs):
    w0 = self.w0.reshape(
        (self.n_words, self.n_hidden)
    )
    w1 = self.w1.reshape(
        (self.n_hidden, 2 * (self.n_topics - 1))
    )
    hs = tt.tanh(xs.dot(w0) + self.b0)
    zs = hs.dot(w1) + self.b1
    zs_mean = zs[:, :(self.n_topics - 1)]
    zs_std = zs[:, (self.n_topics - 1):]
    return zs_mean, zs_std

Results

Result
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xi• Document      as bag-of-words: set of 
number of times of appearance of 
each word 

• Word probability following a mixture of 
multinomials with sample-dependent 
mixing proportions

p(xi|⇡i,�) =
KX

k=1

⇡i,kMult(xi|�k)

p(⇡i) = Dir(⇡i|↵)

L[q✓̂⇡,✓� (⇡,�)]

✓̂⇡i = fw(xi)

⇡i

• Instead of estimating       for each doc, estimate 
parameters of NN     which computes       given a 
sample     :                        (PyMC3 code above) 

•       and     are simultaneously optimizedw

✓⇡i

w ✓̂⇡i

xi ✓̂⇡i = fw(xi)
✓�

with pm.Model() as model:
    pi = Dirichlet('pi', a=(1.0 / n_topics) * np.ones((minibatch_size, n_topics)), 
                    shape=(minibatch_size, n_topics), transform=t_stick_breaking)
    beta = Dirichlet('beta', a=(1.0 / n_topics) * np.ones((n_topics, n_words)), 
                     shape=(n_topics, n_words), transform=t_stick_breaking)
    doc = pm.DensityDist('doc', logp_lda_doc(beta, pi), observed=doc_t)

def logp_lda_doc(beta, pi):
    def ll_docs_f(docs):
        dixs, vixs = docs.nonzero()
        vfreqs = docs[dixs, vixs]
        ll_docs = vfreqs * pm.math.logsumexp(
            tt.log(pi[dixs]) + tt.log(beta.T[vixs]), axis=1).ravel()
        
        # Per-word log-likelihood times num of tokens in the whole dataset
        return tt.sum(ll_docs) / tt.sum(vfreqs) * n_tokens 
    
    return ll_docs_f

p(x|⇡, {mk}Kk=1) =
KX

k=1

⇡kN(x|mk)

p(⇡) = Dir(0.1, · · · , 0.1)

• Estimate posterior distribution of 10,000 parameters 
impossible to automate with MCMC

Green: samples in data 
Red and blue: posterior 
distribution of       with 
precision proportional to 
the numbers of samples 
in each cluster

mk


