
Automatic variational inference
in probabilistic programming

Taku Yoshioka

Abstract Probabilistic programming (PP) allows us to infer beliefs for unobservable events, represented as stochastic variables of
probabilistic models. PPs have rely on Markov chain Monte Carlo (MCMC), however, MCMC is not efficient in the problems involving many (over
thousands) variables. Recently, an automation procedure for variational inference, automatic differentiation variational inference (ADVI), has been
proposed as an alternative to MCMC. ADVI has been implemented in PyMC3, a python library for PP. In this presentation, I will show the theory of
ADVI and an application of PyMC3's ADVI on probabilistic models.

PP and PyMC3

Example: Gaussian mixture model (GMM)

Automatic differentiation variational inference (ADVI)

Example: latent dirichlet allocation (LDA) with variational autoencoder

Summary With automatic Bayesian inference, probabilistic programming allows us to estimate posterior distribution on high
dimensional parameter space, which is impossible to automate with MCMC. Almost arbitrary probabilistic models can be applied. In addition,
variational autoencoder can be incorporated when variational posterior is defined for latent variables corresponding to each sample in data. By
using PyMC3, the model (and NN for autoencoding) is written as a Python code with a natural syntax. Users do not need to learn modelling
languages specific to the library.

• PPs allows us to write probabilistic generative models and
infer unknown stochastic variables in the model.

• In PyMC3, probabilistic models is written as Python code.

Generative model Inference of posterior

p(x|z)p(z)
x : data

z : unknown variables
p(z|x) = p(x|z)p(z)

p(x)
Posterior distribution of

unknown variables

Topic #0: don think just know make going like people want sure
Topic #1: year team game play win games players season period new
Topic #2: edu information com mail list send available university 1993 email
Topic #3: people state government gun world said years war states armenian
Topic #4: god people believe does true jesus say question life way
Topic #5: windows use thanks drive using window card file does work
Topic #6: key use chip encryption government public keys used law clipper
Topic #7: did time didn got said just day right thought let
Topic #8: good like ve better really car probably lot know problem
Topic #9: new power space 10 00 years used price 50 high

Generative model of LDA

ADVI Iteration

EL
BO

• Evicence lower bound (ELBO)
L[q✓(z)] ⌘ Eq✓(z)[log p(x, z)� log q✓(z)]

Goal: minimize distance between
variational posterior and
true posterior wrt parameter p(z|x)

q✓(z)
✓

• Distance: KL-divergence
KL(q✓(z)||p(z|x))

= log p(x)�KL(q✓(z)||p(z|x))

Since is constant wrt , larger
 , lower the distance

log p(x) ✓
L[q✓(z)] KL(q✓(z)||p(z|x))

PyMC3 code
def logp_gmix(mus, pi, tau):
 def logp_(value):
 logps = [tt.log(pi[i]) + logp_normal(mu, tau, value)
 for i, mu in enumerate(mus)]

 return tt.sum(LogSumExp(tt.stacklists(logps)[:, :n_samples], axis=0))

 return logp_

with pm.Model() as model:
 mus = [MvNormal('mu_%d' % i, mu=np.zeros(2), tau=0.1 * np.eye(2), shape=(2,))
 for i in range(2)]
 pi = Dirichlet('pi', a=0.1 * np.ones(2), shape=(2,))
 xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data)

Generative model of GMM

p(mk) = N(0, Id)
p(z)Prior

p(x|z)Likelihood

Variational inference Variable transformation
1. From original constrained space (e.g.,

positive values or simplex) to
(unconstrained) real coordinate space

2. From standardized space to real
 coordinate space

p(z)

z ẑ

p(ẑ)

z = T�1(ẑ)

ẑ = T (z)

p(z̃)

z̃ẑ

p(ẑ)

ẑ = S�1
✓ (z̃)

z̃ = S✓(ẑ)

Parametrized distribution in the expectation of
ELBO can be replaced with a fixed distribution,
allowing to compute an accurate (low variance)
stochastic gradient

Stochastic gradient

r✓L[q✓(z)] = r✓Eq(z̃)[f✓(z̃)]
= Eq(z̃)[r✓f✓(z̃)]

⇠ M�1
PM

m=1 r✓f✓(z̃(m))

Monte Carlo sampling

p(�k) = Dir(�k|�)
Word distribution of k-th topic

Topic distribution of i-th doc

Probability of words in i-th doc

Variational autoencoder

: Depend on each sample
�k : Depend on the model

Unknown variables:
PyMC3 code

NN LDA

xi

def encode(self, xs):
 w0 = self.w0.reshape(
 (self.n_words, self.n_hidden)
)
 w1 = self.w1.reshape(
 (self.n_hidden, 2 * (self.n_topics - 1))
)
 hs = tt.tanh(xs.dot(w0) + self.b0)
 zs = hs.dot(w1) + self.b1
 zs_mean = zs[:, :(self.n_topics - 1)]
 zs_std = zs[:, (self.n_topics - 1):]
 return zs_mean, zs_std

Results

Result

L[q✓(z)] = ENs(z̃)

⇥
log p(x, T�1

(S�1
✓ (

˜

z))

⇤
+

ENs(z̃)

⇥
log |detJT�1

(S�1
✓ (

˜

z))|
⇤
+

H [q✓(ˆz)]

xi• Document as bag-of-words: set of
number of times of appearance of
each word

• Word probability following a mixture of
multinomials with sample-dependent
mixing proportions

p(xi|⇡i,�) =
KX

k=1

⇡i,kMult(xi|�k)

p(⇡i) = Dir(⇡i|↵)

L[q✓̂⇡,✓� (⇡,�)]

✓̂⇡i = fw(xi)

⇡i

• Instead of estimating for each doc, estimate
parameters of NN which computes given a
sample : (PyMC3 code above)

• and are simultaneously optimizedw

✓⇡i

w ✓̂⇡i

xi ✓̂⇡i = fw(xi)
✓�

with pm.Model() as model:
 pi = Dirichlet('pi', a=(1.0 / n_topics) * np.ones((minibatch_size, n_topics)),
 shape=(minibatch_size, n_topics), transform=t_stick_breaking)
 beta = Dirichlet('beta', a=(1.0 / n_topics) * np.ones((n_topics, n_words)),
 shape=(n_topics, n_words), transform=t_stick_breaking)
 doc = pm.DensityDist('doc', logp_lda_doc(beta, pi), observed=doc_t)

def logp_lda_doc(beta, pi):
 def ll_docs_f(docs):
 dixs, vixs = docs.nonzero()
 vfreqs = docs[dixs, vixs]
 ll_docs = vfreqs * pm.math.logsumexp(
 tt.log(pi[dixs]) + tt.log(beta.T[vixs]), axis=1).ravel()

 # Per-word log-likelihood times num of tokens in the whole dataset
 return tt.sum(ll_docs) / tt.sum(vfreqs) * n_tokens

 return ll_docs_f

p(x|⇡, {mk}Kk=1) =
KX

k=1

⇡kN(x|mk)

p(⇡) = Dir(0.1, · · · , 0.1)

• Estimate posterior distribution of 10,000 parameters
impossible to automate with MCMC

Green: samples in data
Red and blue: posterior
distribution of with
precision proportional to
the numbers of samples
in each cluster

mk

